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Laminar flow past a sphere rotating in the
streamwise direction

By D O N G J O O K I M AND H A E C H E O N C H O I†
School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea

(Received 7 June 2001 and in revised form 10 January 2002)

Numerical simulations are conducted for laminar flow past a sphere rotating in
the streamwise direction, in order to investigate the effect of the rotation on the
characteristics of flow over the sphere. The Reynolds numbers considered are Re =
100, 250 and 300 based on the free-stream velocity and sphere diameter, and the
rotational speeds are in the range of 0 6 ω∗ 6 1, where ω∗ is the maximum azimuthal
velocity on the sphere surface normalized by the free-stream velocity. At ω∗ = 0
(without rotation), the flow past the sphere is steady axisymmetric, steady planar-
symmetric, and unsteady planar-symmetric, respectively, at Re = 100, 250 and 300.
Thus, the time-averaged lift forces exerted on the stationary sphere are not zero
at Re = 250 and 300. When the rotational speed increases, the time-averaged drag
force increases for the Reynolds numbers investigated, whereas the time-averaged lift
force is zero for all ω∗ > 0. On the other hand, the lift force fluctuations show a
non-monotonic behaviour with respect to the rotational speed. At Re = 100, the flow
past the sphere is steady axisymmetric for all the rotational speeds considered and
thus the lift force fluctuation is zero. At Re = 250 and 300, however, the flows are
unsteady with rotation and the lift force fluctuations first decrease and then increase
with increasing rotational speed, showing a local minimum at a specific rotational
speed. The vortical structures behind the sphere are also significantly modified by the
rotation. For example, at Re = 300, the flows become ‘frozen’ at ω∗ = 0.5 and 0.6,
i.e. the vortical structures in the wake simply rotate without temporal variation of
their strength and the magnitude of the instantaneous lift force is constant in time.
It is shown that the flow becomes frozen at higher rotational speed with increasing
Reynolds number. The rotation speed of the vortical structures is shown to be slower
than that of the sphere.

1. Introduction
Flow over a sphere is of interest in many engineering applications associated with

particle transport, because a solid particle is generally modelled as a sphere. Solid
particles in a flow translate and rotate simultaneously, where the rotation in the
streamwise or transverse direction may be induced by particle–particle or particle–
wall collisions. Therefore, flow over a rotating sphere has received much attention
and it is important to understand the effect of rotation on the flow.

The characteristics of flow over a sphere depend significantly on the direction of
rotation. One important direction of rotation is the transverse direction, where the
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rotational direction is orthogonal to that of translation. The other is the streamwise
direction, where the rotational direction is the same as that of translation. In case
of the transverse rotation, quite a few studies have been conducted focusing on the
relation between the rotational speed and the force (drag and lift) exerted on the
sphere (Rubinow & Keller 1961; Barkla & Auchterlonie 1971; Tsuji, Morikawa &
Mizuno 1985; Oesterlé & Dinh 1998; Kurose & Komori 1999). However, only a few
studies have been conducted for the case of streamwise rotation and thus only a little
knowledge has been obtained. One may refer to Schlichting (1979) where previous
results on flow over a streamwisely rotating sphere have been summarized. Two
specific features of such a flow were introduced by Schlichting. First, the drag and the
critical Reynolds number, at which the drag coefficient decreases abruptly, depend
strongly on the rotational speed (Luthander & Rydberg 1935). Second, the line of
separation is moved upstream due to the rotation (Hoskin 1955). The physical reason
for this effect is that the centrifugal force, acting on the fluid particles rotating with
the sphere in the boundary layer, has the same effect as an additional adverse pressure
gradient. However, to the best of our knowledge, there has been no investigation of
the effect of the streamwise rotation on the lift force exerted on the sphere and the
flow characteristics behind the sphere.

The objective of this work is to numerically investigate the effect of the streamwise
rotation on the characteristics of flow over a sphere such as the drag, lift and vortical
structures. In particular, the modification of three-dimensional vortical structures due
to the rotation is focused on in this study. The present numerical method is based on
an immersed boundary method in a cylindrical coordinate system (Kim, Kim & Choi
2001). The computations are performed for laminar flow at Re = 100, 250 and 300
in the range of 0 6 ω∗ 6 1, where ω∗ is the non-dimensional angular velocity of the
rotating sphere (the maximum azimuthal velocity on the sphere surface normalized
by the free-stream velocity u∞). Flow over a stationary sphere is first simulated and
compared with the previous numerical and experimental results and then flow over a
rotating sphere is computed in order to understand the effect of the rotation.

2. Numerical details
Flow behind a sphere shows completely unsteady three-dimensional phenomena

even at low Reynolds numbers (Sakamoto & Haniu 1990; Johnson & Patel 1999;
Mittal 1999a,b). Even though the geometry is very simple, flows over a sphere with
and without rotation have been studied mostly by experimental methods; only a
few numerical results have been published in the literature because it is not easy to
numerically simulate the three-dimensional nature of this flow.

So far, there have been two different approaches to the simulation of flow over
a sphere. One uses a body-fitted grid, and the other uses an immersed boundary
method in cylindrical coordinates. In the case of a body-fitted grid, an O-O type grid
in a spherical coordinate system is commonly used, which is generated by rotating
a two-dimensional O-type grid in the azimuthal direction (Shirayama 1992; Johnson
& Patel 1999; Mittal 1999a). In a different body-fitted grid approach, Tomboulides
& Orszag (2000) used an unstructured-based grid together with a mixed spectral
element/Fourier spectral method.

On the other hand, the immersed boundary method was originally developed
for simulation of flow over a complex geometry, where the body in the flow is
treated as momentum forcing in the Navier–Stokes equations rather than a real body.
Therefore, with this method, flow over a sphere can be easily handled with orthogonal
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Figure 1. Schematic diagram of the present immersed boundary method. The shaded area denotes
the sphere and the lines denote grid lines.

(cylindrical) grids that do not coincide with the sphere surface. Recently, it has been
demonstrated that the immersed boundary method can accurately simulate laminar
flow over a stationary sphere (Fadlun et al. 2000; Kim et al. 2001).

In the present study, we use an immersed boundary method in cylindrical coordi-
nates proposed by Kim et al. (2001). In their approach, a mass source/sink is also
introduced near an immersed boundary in order to enhance the quality of the solution
by satisfying the continuity for the cell containing the immersed boundary. Figure 1
is a schematic diagram of the present immersed boundary method using the concept
of momentum forcing and mass source/sink.

The governing equations for unsteady incompressible viscous flow are

∂ui

∂t
+
∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
+ fi, (2.1)

∂ui

∂xi
− q = 0, (2.2)

where xi are the cylindrical coordinates, ui are the corresponding velocity components,
p is the pressure, fi and q, respectively, are the momentum forcing and the mass
source/sink defined on the immersed boundary or inside the body. A staggered grid
system is employed in this study, and thus ui and fi are defined at the cell face, whereas
p and q are defined at the cell centre. All the variables are non-dimensionalized by the
sphere diameter d, and the free-stream velocity u∞. Re denotes the Reynolds number,
defined as Re = u∞d/ν. Here, ν is the kinematic viscosity.

The time-integration method used to solve (2.1) and (2.2) is based on a fractional-
step method where a pseudo-pressure is used to correct the velocity field such that
the continuity equation is satisfied at each computational time step. In this study, we
use a second-order semi-implicit time advancement scheme as in Akselvoll & Moin
(1996), who proposed a kind of domain decomposition approach in order to increase
the computational efficiency in a cylindrical coordinate system. That is, in the core
region (0 6 r < rc), convection and diffusion terms with derivatives in the azimuthal
direction are treated implicitly and the remaining terms explicitly, whereas in the outer
region (r > rc), convection and diffusion terms with derivatives in the radial direction
are treated implicitly and the remaining terms explicitly. This procedure simplifies
the solution algorithm because only one component of the discretized momentum
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equation is nonlinear in each region. The interface (r = rc) between the core and outer
regions is determined such that the time step restriction associated with numerical
instability is minimized. In this study, the interface is located at r ≈ 0.1d. In both
regions, a third-order Runge–Kutta method (RK3) is used for the terms treated
explicitly and a second-order Crank–Nicolson method is used for the terms treated
implicitly:

ûki − uk−1
i

∆t
= −2αk

∂pk−1

∂xi
+ αkB(ûki ) + αkB(uk−1

i ) + γkA(uk−1
i ) + ρkA(uk−2

i ) + fki , (2.3)

∂2φk

∂xi∂xi
=

1

2αk∆t

(
∂ûki
∂xi
− qk

)
, (2.4)

uki = ûki − 2αk∆t
∂φk

∂xi
, (2.5)

pk = pk−1 + φk, (2.6)

where A and B are the operators on the velocity vector, ûi is the intermediate velocity
and φ is the pseudo-pressure. A includes terms treated explicitly and B includes
terms treated implicitly, as mentioned before. Also, ∆t and k are the computational
time step and substep index, respectively, and αk, γk, ρk are the coefficients of RK3
(α1 = 4/15, γ1 = 8/15, ρ1 = 0; α2 = 1/15, γ2 = 5/12, ρ2 = −17/60; α3 = 1/6, γ3 = 3/4,
ρ3 = −5/12).

Note that in order to obtain ûki from (2.3), the momentum forcing fki has to be
determined in advance such that uki satisfies the boundary condition on the immersed
boundary (e.g. a no-slip condition on the stationary sphere surface). Similarly, the
mass source qk also has to be determined in advance in order to obtain φk from (2.4).
In this study, we use the method proposed by Kim et al. (2001) for evaluation of fki
and qk .

Figure 2 shows the coordinate system, boundary conditions and a typical mesh
near the sphere. As explained before, we use a cylindrical coordinate system, where
x, r and θ, respectively, denote the streamwise, radial and azimuthal directions. A
Cartesian coordinate system (x, y, z) is also defined in order to present the drag and
lift forces, where the lift force is composed of two orthogonal (y and z) components.
The computational domain used is −15d 6 x 6 15d, 0 6 r 6 15d, and 0 6 θ 6 2π,
where (x = 0, r = 0) corresponds to the centre location of the sphere. A Dirichlet
boundary condition (ux = u∞, ur = 0, uθ = 0) is used at the inflow and far-field
boundaries, and a convective boundary condition (∂ui/∂t + c∂ui/∂x = 0) is used
for the outflow boundary, where c is the space-averaged streamwise velocity at the
exit. Non-uniform meshes are used with dense resolution at r ' 0.5d for accurately
capturing the separating shear layer around the sphere. The numbers of grid points
are 145(x)×61(r)×40(θ), 193(x)×91(r)×40(θ) and 289(x)×161(r)×40(θ), respectively,
for Re = 100, 250 and 300. The current mesh and domain size have been determined
from an extensive study of the numerical parameters (e.g. computational domain size,
number of grid points, resolution near the sphere surface, etc.). In the case of the
rotating sphere, the direction of the rotation is streamwise (x-direction) as shown
in figure 2 and the non-dimensional rotational speed (ω∗ = ωR/u∞) investigated is
0 6 ω∗ 6 1, where ω is the angular velocity of the streamwise rotation and R is the
radius of the sphere.
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Figure 2. (a) Coordinate system and boundary conditions; (b) typical mesh near the sphere
(Re = 100).

3. Flow past a stationary sphere
For the validation of the present numerical method and comparison with the

characteristics of flow past a rotating sphere, laminar flow past a stationary sphere is
first simulated at three different Reynolds numbers (Re = 100, 250 and 300). Flows
at these Reynolds numbers represent three different laminar-flow regimes: steady
axisymmetric flow (Re 6 200), steady planar-symmetric flow (210 6 Re 6 270) and
unsteady planar-symmetric flow (280 6 Re < 375) (Johnson & Patel 1999; Mittal
1999a,b; Tomboulides & Orszag 2000).

Figure 3 shows the three-dimensional vortical structures behind a stationary sphere
at three Reynolds numbers, where the surfaces of vortical structures are identified
using the method of Jeong & Hussain (1995). At Re = 100, the flow maintains
axisymmetry and no vortical structure exists in the wake (figure 3a). However, at Re =
250, the flow becomes planar-symmetric, losing axisymmetry, and a pair of vortical
structures appears in the wake (figure 3b). At Re = 300, the flow becomes unsteady
and the vortices are shed while the planar-symmetry of the flow is maintained.
Figure 3(c) shows the time sequence of three-dimensional vortical structures during
one period (T ) at Re = 300. At t = 1

4
T , the origin of a vortex (A) is shown to be

attached to a vortical region enveloping the sphere. In the following figure (t = 2
4
T ),

the vortex is shed to convect downstream and the legs develop in the near wake. A
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Figure 3. Vortical structure behind a stationary sphere: (a) Re = 100; (b) Re = 250; (c) Re = 300.
At Re = 300, the time sequence of vortical structures is drawn during one period T .

new vortical structure (B) is visible around the legs of vortex A at t = 3
4
T and is

believed to be induced by vortex A (Johnson & Patel 1999). Then this vortex develops
downstream to form the legs of a new vortex at t = T , and is seen further downstream
at a later time (t = 1

4
T ). Note that the vortical structures A and B have opposite

directions of rotation and different strength, i.e. vortex A is much stronger than B.
This process completes one cycle of vortex shedding behind the sphere, which is very
similar to the result of Johnson & Patel (1999). It is interesting to note that a new
hairpin vortex (F) evolves in the middle of vortex A (at t = T ) and becomes strongest
further downstream. This hairpin-evolution process is very similar to those seen in a
transitional boundary layer (Choi 1998) and in an ‘artificial’ turbulent channel flow
(Zhou et al. 1999), but hairpin vortex F was not observed by Johnson & Patel (1999).



Laminar flow past a rotating sphere 371

Re C̄d C̄l St

Present 100 1.087
250 0.702 0.060
300 0.657 0.067 0.134

Fornberg (1988) 100 1.085

Johnson & Patel (1999) 250 0.70 0.062
300 0.656 0.069 0.137

Constantinescu & Squires (2000) 250 0.70 0.062
300 0.655 0.065 0.136

Table 1. Simulation results for flow over a stationary sphere. Here, C̄d and C̄l are the
time-averaged drag and lift coefficients, respectively.

Table 1 summarizes the results of the present simulation together with the previous
numerical results of Fornberg (1988), Johnson & Patel (1999), and Constantinescu &
Squires (2000) in which body-fitted grids were used. The drag coefficient at Re = 100
agrees very well with that of Fornberg (1988). The drag and lift coefficients at Re = 250
and 300 are also in excellent agreement with those of Johnson & Patel (1999) and
Constantinescu & Squires (2000). The present Strouhal number (St = fd/u∞) at
Re = 300, where f is the vortex shedding frequency, is in good agreement with those
of Johnson & Patel (1999) and Constantinescu & Squires (2000). However, all the
numerical results for St presented in table 1 are smaller than the experimental result
(St = 0.15–0.16) of Sakamoto & Haniu (1990).

4. Flow past a rotating sphere
Flows past a rotating sphere are simulated at Re = 100, 250 and 300, where

flows without rotation are used as initial flow fields. The direction of the rotation
is streamwise and the non-dimensional rotational speed (ω∗ = ωR/u∞) considered
is 0 6 ω∗ 6 1. The present study focuses on the modification of vortical structures
behind the sphere and the variations of drag and lift forces due to the streamwise
rotation. As explained below, simulation results show that the flow characteristics are
very different depending on both the Reynolds number and the rotational speed.

4.1. Flow characteristics

Figure 4 shows the modification of vortical structures due to the rotation at Re = 100,
where the structures are identified by using the same method as in figure 3. The vor-
tical structures are axisymmetric for all the rotational speeds investigated and have
a considerable amount of streamwise-vorticity component (ωx). Also, with increas-
ing rotational speed, the vortex becomes stronger and elongated in the streamwise
direction.

Figure 5 shows the modification of vortical structures due to the rotation at
Re = 250. Without rotation, a pair of vortices with the same vortical strength but
opposite direction of rotation appears in the wake. At ω∗ = 0.1, the vortical structure
with positive ωx becomes stronger, but that of negative ωx is weakened, because the
rotation of the sphere induces positive streamwise vorticity in the wake. This effect
becomes stronger at ω∗ = 0.3, at which the structure with negative ωx disappears in
the wake. However, at ω∗ > 0.5, a structure with negative ωx is newly induced near
that with positive ωx. At ω∗ = 1, the vortical structures with positive and negative
ωx are twisted together in a complex pattern.
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Figure 4. Modification of vortical structures due to the rotation at Re = 100.
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ω* = 0.1
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ω* = 0.3

ω* = 0.5

Figure 5. Modification of vortical structures due to the rotation at Re = 250.

In contrast to the flow at Re = 100, the flow at Re = 250 becomes unsteady for
all the rotational speeds investigated. However, this unsteady flow can be categorized
into two different groups according to the temporal evolution of vortical structures:
at small rotational speeds (ω∗ = 0.1 and 0.3), the vortical structures are ‘frozen’ in a
rotating coordinate, whereas they are unsteady asymmetric at large rotational speeds
(ω∗ > 0.5). The difference between frozen and unsteady asymmetric flows is illustrated
in figures 6 and 7.
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Figure 6. Characteristics of frozen flow at Re = 250 and ω∗ = 0.1: (a) temporal evolution of
vortical structures viewed from a fixed coordinate system (left) and from a rotating coordinate
system (right). (b) Drag and lift coefficients: — – —, Cd; · · · · · ·, Cy; −−−−, Cz; ———, Cl .

Figure 6(a) shows the temporal evolution of vortical structures viewed from a fixed
coordinate and from a rotating coordinate at Re = 250 and ω∗ = 0.1. The rotating
coordinate system rotates with a constant angular velocity the same as that of the
vortical structure. The rotation velocity of the vortical structure is generally different
from that of the sphere and the way of evaluating it is explained in § 4.2. It is clear
from figure 6(a) that the vortical structure simply rotates without temporal variation
in its shape and strength as if the structure were frozen (so it is called ‘frozen’ in this
paper).† This frozen phenomenon can be verified from the time histories of the drag

† We prefer using ‘frozen’ to ‘lock-on’ (or ‘phase-locked’), because the latter phenomenon usually
occurs from disturbances having a certain frequency but the phenomenon described in this paper
is obtained from a steady rotation.
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Figure 7. Temporal evolution of vortical structures viewed from a fixed coordinate system
(unsteady asymmetric flow at Re = 250 and ω∗ = 1).

and lift coefficients shown in figure 6(b). Two components of the lift (Cy and Cz)
experience sinusoidal variations, but the magnitudes of the drag and lift (Cd and Cl)
are constant in time, indicating that the vortical structures in the wake simply rotate
in a frozen state. Note that the time-averaged lift (C̄y and C̄z) is zero.

When the flow is unsteady asymmetric, on the other hand, the vortical structure
rotates with temporal variation in its strength. Figure 7 shows the temporal evolution
of vortical structures viewed from the fixed coordinates at Re = 250 and ω∗ = 1. It is
clear that the vortical structures rotate asymmetrically and convect downstream with
temporal variation (so this is called ‘unsteady asymmetric’) unlike the frozen flow.

Figure 8 shows the modification of vortical structures due to the rotation at
Re = 300. For a stationary sphere, the vortices are shed while the planar-symmetry of
the flow is maintained. However, with the streamwise rotation, the vortical structures
are significantly modified and the flow loses the planar-symmetry. For example, at
ω∗ > 0.3, the vortices are distorted due to the rotation of the sphere and thus the
head of the hairpin vortex observed for ω∗ = 0 completely disappears. Interestingly,
at ω∗ = 0.3, 0.5 and 0.6, a pair of vortical structures having opposite signs of the
streamwise vorticity continuously develop and spiral around the wake centreline. At
ω∗ = 1, the vortical structures become very complicated.

The unsteady flows at Re = 300 can also be categorized into frozen and unsteady
asymmetric flows as for Re = 250. At low rotational speeds (ω∗ = 0.1 and 0.3),
the flows become unsteady asymmetric. Note that the flow at ω∗ = 0 is unsteady
planar-symmetric. The frozen flows are obtained at ω∗ = 0.5 and 0.6, and the flow
becomes unsteady asymmetric again at ω∗ = 1. It is interesting to note that the flow
at Re = 300 becomes frozen at higher rotational speeds than that at Re = 250. The
reason may be that the time scale of the vortices behind the stationary sphere becomes
smaller at higher Reynolds number, and thus higher rotational speed is required to
match the shorter time scale of the vortices in the wake.

It should be noted that there is a fundamental difference in vortical structures
between the frozen flows at Re = 250 and 300: at Re = 250, the frozen flow fields
(ω∗ = 0.1 and 0.3) contain a strong vortical structure (positive ωx) which is elongated
in the streamwise direction; however, at Re = 300, the vortical structures in the frozen
flow fields (ω∗ = 0.5 and 0.6) have both positive and negative ωx and spiral around
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Figure 8. Modification of vortical structures due to the rotation at Re = 300.

ω∗

Re 0 0.1 0.3 0.5 0.6 1

100 Steady S Steady S Steady S Steady S Steady S Steady S
250 Steady P Frozen Frozen Unsteady A Unsteady A Unsteady A
300 Unsteady P Unsteady A Unsteady A Frozen Frozen Unsteady A

Table 2. Flow regimes depending on the Reynolds number and the rotational speed. S, P and A
denote, respectively, axisymmetric, planar-symmetric and asymmetric flows.

the wake centreline. Therefore, the lift characteristics of the frozen flows at Re = 250
and 300 are quite different from each other (see § 4.2). We expect that the frozen flow
field at Re > 300 should be similar to that at Re = 300 rather than at Re = 250.

To summarize, the flows over a sphere with and without the streamwise rotation can
be categorized into various flow regimes depending on the Reynolds number and the
rotational speed as shown in table 2. The flow regimes are steady axisymmetric, steady
planar-symmetric, unsteady planar-symmetric, frozen, and unsteady asymmetric. At
Re = 100, the flow is steady axisymmetric for all the rotational speeds considered,
whereas at Re = 250 and 300, the planar-symmetric flow changes into the asymmetric
and frozen flows depending on the rotational speed.
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Figure 9 (a). For caption see facing page.

4.2. Drag and lift

Figure 9 shows the time histories of the drag and lift coefficients at Re = 250 and 300.
As mentioned before, the magnitudes of the drag and lift (Cd and Cl) are constant
in time when the flow is frozen (ω∗ = 0.1 and 0.3 at Re = 250, and ω∗ = 0.5 and
0.6 at Re = 300), whereas they are time-periodic in the unsteady asymmetric flow. In
the unsteady asymmetric flow, the period (Trep) of Cl is the same as that of Cd, but
it is not necessarily the same as that of Cy and Cz , meaning that the same pattern
of vortical structures appears in the wake at every Trep but at a different azimuthal
angle. That is, during Trep, the vortices rotate by a certain azimuthal angle while
changing their strength periodically. One interesting observation is that the period of
Cy and Cz in the case of the frozen flow at Re = 300 is shorter than that at ω∗ = 1,
meaning that the rotational speed of the vortical structure in the frozen flow is faster
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Figure 9. Time histories of the drag and lift coefficients: (a) Re = 250; (b) Re = 300.
— – —, Cd; · · · · · ·, Cy; −−−−, Cz; ———, Cl .

than that at ω∗ = 1, unlike the case of Re = 250. This difference is attributed to the
different vortical structures in the frozen flows at Re = 250 and 300, as described
before. The rotational speed of the vortices will be examined later in this section.

Figure 10 shows the effect of the rotation on the Strouhal number, St = d/(u∞Trep),
which is associated with the periodicity of Cd and Cl as described in figure 9. The
Strouhal number is zero for frozen flow as well as steady flow because Cd and Cl
are constant for both flows. At Re = 250, the Strouhal number is zero at ω∗ 6 0.3,
whereas it is not zero but varies little for 0.5 6 ω∗ 6 1 where the flow becomes
unsteady asymmetric. At Re = 300, on increasing the rotational speed, the Strouhal
number decreases (unsteady asymmetric), becomes zero at ω∗ = 0.5 and 0.6 (frozen),
and then increases again at ω∗ = 1 (unsteady asymmetric).
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Figure 10. Effect of the rotation on the Strouhal number (St = d/u∞Trep): ———, Re = 250;
−−−−, Re = 300.
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Figure 11. Phase diagram (Cz , Cy) at Re = 250: (a) steady planar-symmetric (ω∗ = 0) and frozen
(ω∗ = 0.1 and 0.3) flows; (b) unsteady asymmetric flows (ω∗ = 0.5, 0.6 and 1).

The dynamic behaviours of the lift, both the magnitude and direction, are illustrated
in the form of a phase diagram, by plotting Cz as a function of Cy as shown in figure 11.
Here, for the unsteady asymmetric flow, the phase diagram is drawn for the period

of 2Trep. The distance from the origin (Cy = Cz = 0) is equal to Cl (=
√
C2
y + C2

z )

and the angle β is the direction of the lift. At Re = 250, for a stationary sphere,
the phase diagram falls on a point because the flow is steady (figure 11a). However,
when the flow becomes frozen at ω∗ = 0.1 and 0.3, the phase diagram becomes a
perfect circle because only the direction of the lift changes, not its magnitude, over
time (figure 11a). For the unsteady asymmetric flow (figure 11b) at ω∗ > 0.5, the
phase diagram becomes a curve turning around the origin. It is noted that at ω∗ = 1,
the phase diagram becomes a closed curve but not a circle.

Figure 12 shows the phase diagram (Cz , Cy) at Re = 300, drawn for the period
13Trep for the unsteady asymmetric flow. Without the streamwise rotation (ω∗ = 0),
the flow is unsteady planar-symmetric and thus the magnitude of the lift oscillates
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Figure 12. Phase diagram (Cz , Cy) at Re = 300: (a) unsteady planar-symmetric (ω∗ = 0) and frozen
(ω∗ = 0.5 and 0.6) flows; (b) ω∗ = 0.1; (c) ω∗ = 0.3; (d ) ω∗ = 1. (b), (c) and (d ) correspond to
unsteady asymmetric flows.

on a straight line on the phase diagram. At ω∗ = 0.5 and 0.6, the phase diagrams
become perfect circles because the flows are frozen. The radii of the circles at ω∗ = 0.5
and 0.6 are nearly the same, as shown in figure 12(a). On the other hand, when the
flow becomes unsteady asymmetric at ω∗ = 0.1, 0.3 and 1, both the magnitude and
direction of the lift change over time and the phase diagram turns around the origin.

As shown in the previous section, the vortical structures past a sphere rotate in
the same direction as the rotation of the sphere. However, the rotation speed of the
vortical structures is quite different from that of the sphere. The time history of the
lift angle β is used to evaluate the rotation speed of the vortical structures, because
it is closely associated with the rotation of the vortical structures. Figures 13(a) and
13(b) show the time histories of the lift angle β, respectively for the frozen and
unsteady asymmetric flows, where the slope of β with respect to t corresponds to
the rotation velocity of the vortical structures. As seen in figure 13(a), the vortical
structures rotate at a constant speed when the flow is frozen. However, when the
flow is unsteady asymmetric, they do not have a constant rotation speed (figure 13b).
Therefore, in this case, the rotation velocity of the vortical structures is estimated in
a time-averaged sense.
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Figure 13. Time histories of the lift angle β at Re = 300: (a) frozen flow (ω∗ = 0.6); (b) unsteady
asymmetric flow (ω∗ = 0.3 and 1).

The period of β is denoted as Trev and it is equivalent to the time for the vortical
structures to complete one revolution. Note that Trev is not equal to Trep. Figure 14(a)
shows the revolution time Trev as a function of the rotational speed. When normalized
by d/u∞, the revolution time at Re = 250 decreases with increasing rotational speed,
indicating that the vortical structures rotate faster at higher ω∗. However, at Re = 300,
the revolution times for the frozen flows (ω∗ = 0.5 and 0.6) are smaller than that at
ω∗ = 1, meaning that the vortical structures in the frozen flow at Re = 300 rotate
faster than those at ω∗ = 1. The difference in the variations of Trev with respect to
ω∗ at Re = 250 and 300 is again attributed to the significant difference in the vortical
structures at Re = 250 and 300. Figure 14(b) shows the ratio of the revolution time
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Figure 14. Time for the vortical structure to complete one revolution: (a) normalized by d/u∞; (b)
normalized by the time for the sphere to rotate by 360◦. ———, Re = 250; −−−−, Re = 300.

of the vortical structures to that of the sphere (Tω). It is seen that Trev/Tω > 1
for all the rotational speeds considered, indicating that the revolution speed of the
vortices is slower than that of the sphere. The ratio Trev/Tω increases monotonically
with increasing rotational speed at Re = 250, whereas at Re = 300 it shows a local
minimum when the flow is frozen. It is also interesting to note that the ratio becomes
nearly 1 when the flow is frozen, meaning that the vortical structures rotate nearly in
phase with the rotating sphere as if they had almost attained a solid-body rotation.

The dynamic behaviours of the drag and lift forces are investigated from the phase
diagram (Cl , Cd) as shown in figure 15. Note that Cl is the magnitude of the lift

coefficient without considering its direction (Cl =
√
C2
y + C2

z ) and thus the time-

averaged Cl is not necessarily zero even if the time-averaged Cy or Cz is zero. The
phase diagram takes the form of a closed curve for the unsteady planar-symmetric
and unsteady asymmetric flows, whereas it falls on a point for the steady and frozen
flows (in the frozen flow, Cd and Cl are constant even though the direction of the
lift changes in time). The closed curves for the unsteady flows suggest that the flows
are time-periodic. Also, the position of the curve indicates the time-averaged values
of Cd and Cl , and its size denotes the fluctuation amplitudes. Therefore, it is clear
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Figure 15. Phase diagram (Cl , Cd): (a) Re = 250; (b) Re = 300 (ω∗ = 0 is drawn with a dashed
line for clear comparison).

from figure 15 that C̄d increases with increasing rotational speed for both Reynolds
numbers, whereas C̄l shows a non-monotonic behaviour with respect to the rotational
speed (see below). The fluctuation amplitude of Cl is larger than that of Cd and
increases with increasing rotational speed for the unsteady asymmetric flow. When
the flow is frozen, the fluctuations of Cd and Cl are zero.

Figure 16 shows the variations of the time-averaged Cd and Cl with respect to
the rotational speed. For a given Reynolds number, C̄d increases with increasing
rotational speed, whereas it decreases with increasing Reynolds number for a given
rotational speed. On the other hand, C̄l shows a non-monotonic behaviour as shown
in figure 16(b). At Re = 100, C̄l is zero for all the rotational speeds investigated
because the flow maintains axisymmetry. However, at Re = 250 and 300, C̄l first
decreases and then increases with increasing rotational speed. It is interesting to note
that C̄l is very low at Re = 300 when the flow is frozen, which is not true at Re = 250.
The reason is that at Re = 250, the frozen flow contains a strong and elongated
vortical structure whose centre is not aligned with the wake centreline, and thus C̄l
for the frozen flow is not smaller than those at ω∗ = 0.5 and 0.6, at which the strong
vortical structure twists around the wake centreline (see figure 5).
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Figure 17 shows the variation of the pressure coefficient (Cp = (p − p∞)/ 1
2
ρu2∞)

along the sphere surface with respect to the rotational speed at Re = 300, where
p∞ is the pressure in the free stream and Cp is an averaged value in time and
azimuthal direction. The pressure at the rear of the sphere decreases with increasing
rotational speed, whereas it is nearly unchanged at the front of the sphere. Therefore,
the pressure drag increases with increasing rotational speed. Similar observations are
made for Re = 100 and 250.

Figure 18 shows the variations of the separation angle (αs) and the size of the
recirculation region (L) with respect to the rotational speed, where αs is the separation
angle from the front stagnation point of the sphere. Without the streamwise rotation
(ω∗ = 0), the separation line moves upstream on the sphere surface with increasing
Reynolds number. The separation line also moves upstream with increasing rotational
speed for all the Reynolds numbers considered, which is in good agreement with
the result of Hoskin (1955). However, the effect of the rotation on the size of
the recirculation region depends on the Reynolds number, where the size of the
recirculation region is estimated as the distance from the base of the sphere to the
point where the time-averaged streamwise velocity is zero. The size of the recirculation
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Figure 17. Variation of the pressure coefficient along the sphere surface with respect to the
rotational speed at Re = 300: ———, ω∗ = 0; −−−−, ω∗ = 0.3; · · · · · ·, ω∗ = 0.6; — – —, ω∗ = 1.

region increases with increasing rotational speed at Re = 100 and 250, whereas at
Re = 300 the size of the recirculation region shows a local minimum when the flow
is frozen. This different behaviour is again associated with the difference in vortex
formation in the wake at those Reynolds numbers.

5. Summary and concluding remarks
Laminar flow past a sphere rotating in the streamwise direction was simulated using

an immersed boundary method in order to investigate the effect of the streamwise
rotation on the vortical structures behind the sphere as well as the drag and lift forces
exerted on the sphere. Numerical simulations were performed at Re = 100, 250 and
300 in the range of 0 6 ω∗ 6 1. The results showed that the flow around the sphere
strongly depends on both the Reynolds number and the rotational speed.

The flows over a sphere with and without the streamwise rotation were categorized
into various flow regimes: steady axisymmetric, steady planar-symmetric, unsteady
planar-symmetric, frozen and unsteady asymmetric. At ω∗ = 0 (without rotation), the
flow past the sphere was steady axisymmetric, steady planar-symmetric, and unsteady
planar-symmetric, respectively, at Re = 100, 250 and 300. With the streamwise
rotation, the flow changed into steady axisymmetric, frozen, and unsteady asymmetric
flows depending on the Reynolds number and the rotational speed.

The three-dimensional vortical structures behind the sphere were significantly mod-
ified by the streamwise rotation. For example, the vortical structures at Re = 300 were
completely changed due to the rotation and the flow became frozen at ω∗ = 0.5 and
0.6. When the flow became frozen, the vortical structures behind the sphere simply
rotated without temporal variation of their strength, and the magnitudes of the drag
and lift were constant in time. As the Reynolds number increased, the flow became
frozen at larger rotational speed. On the other hand, when the flow was unsteady
asymmetric, the vortical structures rotated with temporal variation of their strength.
The rotation speed of the vortical structures was also estimated, showing that it is
slower than that of the sphere for all the rotational speeds considered.

When the rotational speed increased, the time-averaged drag coefficient increased,
whereas the time-averaged lift coefficients (C̄y and C̄z) were zero for all ω∗ > 0.
Meanwhile, the time-averaged magnitude of the lift coefficients (C̄l) showed a non-
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monotonic behaviour depending on the Reynolds number. At Re = 100, the flow past
the sphere showed steady axisymmetry for all the rotational speeds and thus C̄l was
zero. On the other hand, at Re = 250 and 300, the flows were unsteady with rotation.
With increasing rotational speed, C̄l first decreased and then increased, showing a
local minimum at a specific rotational speed.

From the present study, we have observed a phenomenon termed ‘frozen’ in the
wake behind a rotating sphere at Re 6 300. In this Reynolds number range, the flow
behind a stationary sphere is either steady or unsteady planar-symmetric. At a higher
Reynolds number, however, the flow behind a stationary sphere becomes unsteady
asymmetric and thus a different type of ‘frozen’ flow may be observed with a rotating
sphere, which should be an important subject for future study.

This work is supported by the Creative Research Initiatives of the Korean Ministry
of Science and Technology.
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